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 Riemann Sums: 

o Evaluates integrals by treating them as rectangles of subintervals. 

o Approximating using Riemann sums: 
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*  n = number of subintervals. 

 Divide the region up into rectangles and find their areas, then add. 

 Lower Riemann sum: uses the lower boundary of a subinterval for *
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 Upper Riemann sum: uses the upper boundary of a subinterval for *
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 Midpoint Riemann sum: uses the midpoint of a subinterval for *
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o Exactly evaluating an integral using a Riemann Sum: 

 Divide into infinitely many subintervals: xxfdxxf
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 By extension: 
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 A limit of a Riemann sum is the most fundamental definition of an integral. 

 It may be necessary to flip the order of integration (i.e. rewrite with 

respect to y) 

o Summation formulas (derived from discrete mathematics): 
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 Trapezoidal Rule 

o Approximates integrals by dividing the region into trapezoids (i.e. first-degree 

linear approximation) 

o Know the area of a trapezoid: )(
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 For our purposes: )))(()((
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o Let the interval [a, b] be divided into n subintervals, with the i
th

 subinterval with 

lower and upper bounds being 1ix and ix respectively. By the Trapezoidal Rule: 
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 Simpson's Rule 

o Approximates integrals using a second-degree Taylor polynomial to approximate 

the curve on each interval (this can be extended to n degrees for better accuracy) 

o Let the interval [a, b] be divided into n subintervals, with the i
th

 subinterval with 

lower and upper bounds being 1ix and ix respectively. 
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